Methods of Transfection with Messenger RNA Gene Vectors
نویسندگان
چکیده
Non-viral gene delivery vectors with messenger RNA (mRNA) as a carrier of genetic information are among the staple gene transfer vectors for research in gene therapy, gene vaccination and cell fate reprogramming. As no passage of genetic cargo in and out of the nucleus is required, mRNA-based vectors typically offer the following five advantages: 1) fast start of transgene expression; 2) ability to express genes in nondividing cells with an intact nuclear envelope; 3) insensitivity to the major gene silencing mechanisms, which operate in the nucleus; 4) absence of potentially mutagenic genomic insertions; 5) high cell survival rate after transfection procedures, which do not need to disturb nuclear envelope. In addition, mRNA-based vectors offer a simple combination of various transgenes through mixing of several mRNAs in a single multi-gene cocktail or expression of a number of proteins from a single mRNA molecule using internal ribosome entry sites (IRESes), ribosome skipping sequences and proteolytic signals. However, on the downside, uncontrolled extrac‐ ellular and intracellular decay of mRNA can be a substantial hurdle for mRNAmediated gene transfer. Procedures for mRNA delivery are analogous to DNA transfer methods, which are well-established. In general, there are three actors in the gene delivery play, namely, the vector, the cell and the transfer environment. The desired outcome, that is, the efficient delivery of a gene to a target cell population, depends on the efficient interaction of all three parties. Thus, the vector should be customised for the target cell population and presented in a form that is resistant to the aggressive factors in the delivery milieu. At the same time, the delivery environ‐ ment should be adjusted to be more vector-friendly and more cell-friendly. The recipient cells should be subjected to a specific regimen or artificially modified to become receptive to gene transfer with a particular vector and resistant to the environment. As a rule, barriers outside tissues (e.g. mucus) and an aggressive © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. intercellular environment complicate gene delivery in vivo, which, therefore, requires more complex gene transfer procedures than transfection of tissue culture cells. This review is focused on transfection methods for mRNA vectors, which rely either on the forceful propulsion of mRNA inside the target cells (e.g. by electroporation or gene gun) or on the complexing of mRNA with other substances (e.g. polycationic transfection reagents) for delivery via endocytic pathways.
منابع مشابه
Gene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملPreparation, characterization and transfection efficiency of nanoparticles composed of alkane-modified polyallylamine
Objective(s): Although viral vectors are considered efficient gene transfer agents, their board application has been limited by toxicity, immunogenicity, mutagenicity and small gene carrying capacity. Non-viral vectors are safe but they suffer from low transfection efficiency. In the present study, polyallylamine (PAA) in two molecular weights (15 and 65 kDa) was modified by alkane derivatives ...
متن کاملAlkyl cross-linked low molecular weight polypropyleneimine dendrimers as efficient gene delivery vectors
Objective(s): First, 10-bromodecanoic acid was covalently attached to all available surface primary amines of PPI G2 and G3 to increase their lipophilicity. In the subsequent step, PPIs were conjugated to the alkylcarboxylate groups of alkylcarboxylate-PPI derivatives to increase the number of surface primary amines. Physicochemical properties of modified PPIs were determined. Transfection expe...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کامل